If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2-55t-8=0
a = 7; b = -55; c = -8;
Δ = b2-4ac
Δ = -552-4·7·(-8)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-57}{2*7}=\frac{-2}{14} =-1/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+57}{2*7}=\frac{112}{14} =8 $
| 4x−7=5x+1 | | 14-w=240 | | 3v=12=6v | | 7t^2+55t+8=0 | | 3x=114.00 | | -3v=12=-6v | | 12+.60x=50 | | 8t^2+55t+8=0 | | 2(x-3)-3(x+2)=x+2-(x-3) | | 4(x-7)=-44 | | 11+3x-7=6x | | -3v=12=6v | | 3.2-y=1.5 | | -11x-10=8 | | 7+8x=9x+2 | | 4x−38=3x | | 13r-16=16r+11 | | -19p=171 | | 8x2-4=0 | | 261=117-x | | 3x^2+3x+6=0. | | 6x=310 | | (4x+4)+(3-9)=37 | | 10x=6x−20 | | 261=117–x | | 2010x=6x−20 | | -9x+8=7-5x | | 2x−8=6x+8 | | 11x-18=9x+4 | | 180=4y-1 | | 180=(4y-1) | | 13x+29=5x−51 |